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Abstract

This paper describes efforts to develop a trans-
formation-based software environment which support s
the acquisition and validation of software requirement s
specifications . These requirements may be stated in -
formally at first, and then gradually formalized an d
elaborated. Support is provided for groups of require-
ments analysts working together, focusing on differen t
analysis tasks and areas of concern. The environment
assists in the validation of formalized requirements b y
translating them into natural language and graphica l
diagrams, and testing them against a running sim-
ulation of the system to be built . Requirements de-
fined in terms of domain concepts are transformed int o
constraints on system components . The advantage s
of this approach are that specifications can be trace d
back to requirements and domain concepts, which in
turn have been precisely defined .

1 Introductio n

We have built a demonstration requirements/spec-
ification environment called ARIES I which require-
ments analysts may use in evaluating system require-
ments and codifying them in formal specifications .
This work helps to address several roadblocks in pro-
viding knowledge-based automated assistance to th e
process of developing formal specifications . One of
the principal roadblocks is that formal specificatio n
languages are difficult to use in requirements acqui-
sition, particularly by people who are not experts i n
logic . ARIES provides tools for the gradual evolution
of acquired requirements, expressed in hypertext an d
graphical diagrams, into formal specifications . The

`An extended version of this paper appeared in Journal of
Systerns Integration, vol . 1, pp . 283-320 .

1 ARIES stands for Acquisition of Requirements and Incre-

mental Evolution of Specifications .

analysts invoke transformations to carry out this evo-
lution ; in general, support for rapid and coordinated
evolution of requirements is a major concern . ARIES i s

particularly concerned with problems that arise in th e
development of specifications of large systems . Speci-
fication reuse is a major concern, so that large specifi-
cations do not have to be written from scratch . Mech-
anisms are provided for dealing with conflicts in re-
quirements, especially those arising when groups of an-
alysts work together . Validation techniques, includin g
simulation, deduction, and abstraction, are provided ,
to cope with the problem that large specifications ar e
difficult to understand and reason about .

ARIES is a product of the ongoing Knowledge-
Based Software Assistant (KBSA) program . KBSA, as
proposed in the 1983 report by the US Air Force' s
Rome Laboratories [10], was conceived as an inte-
grated knowledge-based system to support all aspect s
of the software life cycle . The ARIES effort builds on
the results of earlier efforts at USC / ISI and Lock -
heed Sanders . Requirements analysis was addressed i n
Lockheed Sanders's Knowledge-Based Requirement s
Assistant [11] . ISI developed the Knowledge-Based
Specification Assistant [19, 15, 14] to support spec-
ification construction, validation, and evolution . In
ARIES there is no attempt to separate requirements
analysis activities from specification activities ; rather ,
specifications are viewed as the outcome of the proces s
of acquiring requirements and formalizing them .

2 ARIES's Contribution

ARIES contains tools for acquisition, review, analy-
sis, and evolution . Acquisition facilities allow analyst s
to build up system descriptions gradually . Review an d
analysis tools allow analysts to check for consistency ,
correctness, and ambiguity, and gauge completeness ;
they also help make systems descriptions understand-
able to non-computer specialists . Evolution tools sup-
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port modification, tracing, and evolution of require-
ments descriptions .

2 .1 Acquisition and review tool s

The acquisition tools in ARIES aim to capture ini-
tial statements of requirements as simply and directl y
as possible . A structured text facility is employed fo r
managing textual information found in relevant docu-
ments or in informal engineering notes . To the exten t
that such documents already exist and can be linke d
to subsequent formal specifications, ARIES can make a
strong contribution to the correctness and traceabilit y
of the completed specification . Since natural languag e
by itself is often awkward and ambiguous as a mediu m
for stating requirements, other notations familiar t o
analysts are likewise supported : state transition di-
agrams, information flow diagrams, taxonomies, de -
composition hierarchies, as well as formal specification
languages . We are experimenting with domain-specifi c
notations, to make it possible for non-computer spe-
cialists to describe requirements . Importantly, these
notations are all mapped onto a common representa-
tion internal to ARIES .

The review process in ARIES applies many of the
same tools as acquisition, but in reverse . Informa-
tion entered into the system in one notation may b e
presented in a different notation ; making it easier t o
check specifications for correctness and completenes s
of specifications . However, not all notations are used
in a symmetric fashion—for example, ARIES is able
to translate from its formal internal descriptions t o
English, but it cannot translate English into forma l
requirements statements .

2 .2 Evolutio n

Evolution mechanisms are central to requirement s
analysis in ARIES : requirements statements are ex-
pected to evolve gradually over time . Evolution

transformations are the principal mechanism for evo-
lution in ARIES . They are operators that modify
system descriptions in a controlled fashion, affect-
ing some aspects of a requirements statement whil e
retaining others unchanged . They also propagat e
changes throughout a system description . Signifi-
cant effort has been invested in ARIES in identify-
ing evolution steps (both meaning-preserving and non-
meaning-preserving) that routinely occur in the spec-
ification development process, and automating them
in the form of evolution transformations .

2.3 Analysi s

Analysis capabilities help analysts check for incon-
sistencies in proposed requirements, and explore con -
sequences . Three basic types of analysis capabilitie s
are provided . First, a simulation facility translates de-
scriptions of required behavior into executable simula-
tions . By running the simulations, an analyst can de-
termine whether the stated requirements really guar-
antee satisfactory behavior . Deduction mechanism s
propagate information through the system descrip-
tion, both to complete it and to detect conflicts an d
inconsistencies . Abstraction mechanisms employ evo-
lution transformations to extract simplified views o f
the system description . These abstracted views are
typically easier to validate, either through simulatio n
or by inspection .

2 .4 Reuse tools

Requirements may be defined by specializing an d
adapting existing requirements in ARIES's knowledg e
base of common requirements ; this makes it easie r
to define requirements quickly and accurately . Fold-

ers are used in ARIES to capture, separate, and re -
late bodies of requirements information . The analyst s
can control the extent to which folders share infor-
mation, and gradually increase the sharing as incon-
sistencies are reconciled . ARIES places a heavy em-
phasis on codification and use of domain knowledg e
in requirements analysis . Although a number of re-
searchers have identified domain modeling as a ke y
concern (e .g ., Greenspan [4]), it is given short shrif t
in typical practice . Requirements analysis is usuall y
narrowly focused on describing the requirements for a
single system . This is problematic if an organizatio n
is interested in introducing more than one compute r
system into an environment, or when the degree o f
computerization of an organization is expected to in -
crease over time . We have been modeling particular
domains within ARIES, and experimenting with usin g
such knowledge in the engineering of requirements fo r
multiple systems .

3 An Example of Us e

To demonstrate the power of the ARIES approach ,
and its ability to handle large complex specificatio n
problems, we have devoted significant effort to a sin-
gle domain, namely air traffic control (ATC) . The re-
quirements documents for the the Federal Aviation
Administration ' s Advanced Automation Program [13 ]
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Controlle r

Figure 1 : Initial context diagram of ATC syste m

were studied, and sections of these documents wer e
formalized . Other documents concerning air traffi c
control procedures, as well as interviews with AT C
experts, were also used as part of this study. The pur-
pose of the study was to show that ARIES is potentially
applicable to such problems, although we have not at -
tempted to test it in use by software engineers on suc h
projects .

The following discussion presents a particula r
thread of specification development, taken from th e
ATC domain . This example highlights the use of evo-
lution transformations in specification development .
Other capabilities will be illustrated throughout th e
paper .

Figure 1 shows an initial view of aircraft cours e
monitoring . It is depicted here in a context diagram ,
a diagram showing the interactions between a sys-
tem and its external environment, and the information
that flows between them . In these diagrams, ovals de-
note processes, boxes and miscellaneous icons denot e
objects, and double circles indicate system boundaries ,

The diagram distills course monitoring to its essen-
tial elements : the interaction between aircraft and th e
ATC system (ATC) . This abstracted view of the ATC
system is useful as a basis for stating course moni-
toring requirements . It is a natural abstraction fo r
the domain, corresponding to the way flight proce-
dures are commonly described in airmen's flight man-
uals [2] . We will not go into the specific details here
of how far expected location and actual location ar e
permitted to differ . Our concern is rather to ensure

that course monitoring requirements stated from th e
airman's point of view can be transformed into spec-
ifications of system functionality, so that they can b e
integrated into the requirements specification . The
transformed requirements should take into account the
actual data interfaces of the proposed system .

Figure 2 shows a more detailed view of the AT C
process . In this view, more of the agents of the pro -
posed system are introduced, specifically radars an d
controllers . ATC is no longer viewed as a single agent ;
instead, there are two classes of agents, the air traffi c
control computer system and the controllers . The ai r
traffic control system has as one of its subfunction s
a process called Ensure-On-Course which examines th e
location of the aircraft, and compares it against the
aircraft's expected location . If the two locations diffe r
to a sufficient degree, ATC attempts to affect a cours e
change, changing the location of the aircraft .

Now the system determines the locations of th e
aircraft as follows . The radar observes the aircraft
and transmits a set of radar messages, indicating that
targets have been observed at particular locations .
A Track-Correlation function inputs these radar mes-
sages and processes them to produce a set of tracks ,
Each track corresponds to a specific aircraft ; the loca-
tions associated with the tracks are updated when new
radar messages are received . Meanwhile, expected air-
craft locations are now computed from the aircraft
flight plans, which in turn are input by the controllers .
The Ensure-On-Course process is now modified so tha t
it issues notifications to the controller (by signaling
Must-Change-Course for an aircraft) ; the controller
then issues commands to the aircraft over the radio .

In order to get to this more detailed level of descrip-
tion, a number of transformations must be performed .
Most of the transformations have to do with definin g
the pattern of data flow through the system . We can
suggest three options for obtaining this more detaile d
description .

First we can maintain a limited, very informal, link
between the two descriptions — this in fact is wha t
happens in most current practice . The detailed inter -
connections between abstractions are not stated ex-
plicitly and any attempt at traceability occurs at bes t
through following a paper trail . It may be possible t o
say that description 2 follows description 1, but ther e
is no record of the evolution (e .g ., how was access t o
"location-of" data changed?) as we move toward a
formal description .

Second, the interconnections can be manually de -
rived and recorded — perhaps using a global replac e
command on a textual version of the stated informa-
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Figure 2 : Detailed context diagram of the ATC system

Figure 3 : Intermediate context diagram of the AT C
system

tion. Traceability is possible, but the process is te-
dious and error prone .

Third, evolution transformations can be employe d
to derive the detailed description from the simplifie d
one . We have implemented a number of the evolutio n
transformations required . The user must select the de -
sired transformations, but it is ARIES ' S responsibility
to check the transformations applicability condition s
and ensure that all effects are properly handled .

The most important transformation in this exam-
ple is called Splice-Data-Accesses . Figure 3 shows th e
result of ARIES application of this transformation to
the version in Figure 1 . It operates as follows . In
the initial version Ensure-On-Course accesses aircraft
locations directly. Splice-Data-Accesses is used to in-
troduce a new class of object, called Track, which has
a location that matches the aircraft's location . The
Ensure-On-Course process is modified in a correspond -
ing way to refer to the track locations instead of th e
aircraft locations .

This is a very typical example of how evolutio n
transformations work . The transformation modi-
fies one aspect of the specification (data flow) whil e
keeping other aspects fixed (e .g ., the functionalit y
of Ensure-On-Course) . It accomplishes this via sys-
tematic changes to the specification. In this case ,
the transformation scans the definition of Ensure-On -
Course looking for references to Location-of ; each of
these is replaced with a reference to the Track-Location
attribute of tracks .

Completing the derivation of this example require s
further application of several transformations . Splice -
Data-Accesses is applied again to introduce the ob-
ject Radar-Message, which is an intermediate betwee n
Aircraft and Track . Maintain-Invariant-Reactively i s
invoked to construct processes for continuously up -
dating the radar messages and the tracks . A trans -
formation called Install-Protocol is used to introduc e
a notification protocol between the Ensure-On-Cours e
process and the controller, so that Ensure-On-Cours e
issues notifications to the controller whenever the lo -
cation of the aircraft must be changed . A new process
called Course-Prediction is added to compute expecte d
locations from flight plans . Through this derivation
the specification is gradually refined towards a version
in which each system component interacts only with
those data and agents that it will be able to interac t
with in the implemented system .

4 Mechanisms for Supporting Specifi-
cation Evolution

In this section, we describe the major technica l
challenges we have undertaken to create ARIES .

4.1 Folders and workspace s

The primary units of organization for specifications
and requirements knowledge are workspaces and fold-
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ers . Each analyst interacting with ARIES has one or
more private workspaces, which are collections of sys-
tem descriptions that are to be interpreted in a com-
mon context . Whenever an analyst is working on a
problem, it is in the context of a particular workspace
of definitions appropriate for that problem . In orde r
to populate a workspace, the analyst makes use of on e
or more folders, which are collections of reusable con-
cept definitions . The ARIES knowledge base currentl y
contains 122 folders comprising over 1500 concepts .
Folders may contain either formal or informal descrip-
tions . Reusable formal descriptions include precis e
definitions of reusable concepts ; reusable informal de-
scriptions include excerpts from published document s
describing requirements of the domain, e .g ., air traffi c
control manuals .

4 .2 Reuse techniques

Folders are intended to deal with the problems
of sharing and hiding information that arise in sys-
tems with large knowledge bases. They facilitate
reuse of requirements descriptions. A number of
other reuse techniques are being developed and ex-
plored : representation of multiple models, parame-
terized folders, specialization hierarchies, higher-orde r
constraints, and transformations .

4.2 .1 Representation of multiple models

Analysts may selectively incorporate models of con-
cepts into their specifications, as in the following ex-
ample. The ARIES knowledge base contains severa l
alternative models for directions : as compass points
(e .g ., north, south, east, and west), as the number of
degrees clockwise from magnetic north, or as multiple s
of ten degrees from magnetic north (used to mark th e
direction of runways) . Each model is stored in a dif-
ferent folder, these folders are organized in a folder
specification hierarchy .

These collections of models may be used as follows .
During the initial stages of requirements of analysis ,
when the system description is not very detailed, a n
analyst can use the folder with the most general, an d
least detailed, model of the concept of interest . Then ,
as requirements are more detailed, and the analyst has
a better understanding of what details need to be mod-
eled, a model that is lower in the folder specializatio n
hierarchy may be used . This incremental traversal o f
the folder specialization hierarchy helps ensure that
the model that is ultimately selected captures the as-
pects of the concept being modeled that are needed ,
and does not include irrelevant detail,

4.2 .2 Reuse through concept specialization

If an analyst needs to define a new concept, it is ofte n
advantageous to define it as a specialization of one or
more abstract concepts, rather than construct a def-
inition from scratch . Specialization hierarchies relate
specific concepts to more general concepts, as in othe r
knowledge-based systems . They also relate specifi c
models of concepts to generic models of the same con-
cepts . The ARIES knowledge base contains specializa-
tion hierarchies of types, relations, and events . Some
important technical concerns had to be addressed i n
order to ensure that such specialization hierarchies ar e
meaningful .

Consider, for example, two events, takeoff and
move . Intuitively, it would make sense for takeoff to
be a specialization of move : if an aircraft is taking off ,
it is also moving . However, the two events are likely t o
have different parameters . In the ARIES model, take -
off takes as input one parameter, the aircraft takin g
off . move, on the other hand, has three parameters :
the object being moved, the agent doing the moving ,
and the location that the object will be moved to . A
simple logical implication between the two concept s
cannot be drawn, because the parameters of the two
concepts do not match up ,

The solution to this problem that we provide i n
ARIES is to reify the events and relations, i .e ., to treat
instances of them as objects, When an event starts ,
an object representing the event is created ; when th e
event completes, the object is destroyed . Parameters
of the events become attributes of the correspondin g
event objects . Subsumption for events and relation s
is then equivalent to type subsumption for the object s
representing the events and relations . In the case of
takeoff and move, subsumption is defined as follows .
Move actions are represented as objects with three at -
tributes : actor, actee, and destination . These are th e
names of the input parameters in the declaration o f
move . Takeoff actions are modeled as having four pa-
rameters and roles . One of them, ac, is an input pa-
rameter – the aircraft taking off . Another, destination ,
is an output parameter, bound to the aircraft ' s new lo-
cation when the takeoff is completed . Two other roles ,
actee and actor, are bound to the value of the input
parameter ac . (Note that these binding are specifie d
in the roles attribute of takeoff.) When a takeoff event
is initiated, a corresponding object is created, with at -
tributes ac, actor, actee, and destination, correspond-
ing to the parameters and roles . By the semantic s
of term subsumption, making takeoff a specializatio n
of move means that every event object describing a
takeoff must also be a well-formed move object .
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4.2 .3 Adaptation

The above techniques all enable analysts to construc t
new specifications by reusing portions of existing spec-
ifications and domain knowledge . However, it is unre-
alistic to expect all concepts to be used in a specifica-
tion to be present in reusable form . Reuse technique s
must be complemented with techniques for adaptin g
and modifying existing knowledge . While informa l
reuse (i .e ., cutting and pasting as in a text editor) i s
possible, we believe that there are many advantages t o
be gained by using evolution transformations to con-
trol this process . Evolution transformations make i t
possible to adapt concepts in the knowledge base i n
restricted, systematic ways, to avoid the introductio n
of errors during the adaptation process .

4.3 Acquisition and review

In order to make use of folders and reusable infor-
mation, it is necessary to be able to view them, selec t
from them, and add to them. These actions are don e
through an interface called the Presentation Facility ,
which makes ti possible to enter and view informatio n
through a variety of different notations .

All notations that ARIES supports are views of th e
same underlying system description representation .
The notations, which we call "presentations, " fall int o
the following categories .

• Graphical presentations are diagrams showin g
certain objects in the ARIES knowledge base, an d
the links interconnecting them . The graphical
presentations in ARIES include specialization hi-
erarchy diagrams, state transition diagrams, dat a
or information flow diagrams, context diagram s
such as those shown in Section 3, and functiona l
decomposition diagrams .

• Spreadsheet presentations are tabular diagram s
that allow analysts to enter requirements for a
collection of components of the system descrip-
tion and interact with an underlying constrain t
propagation system which is maintaining depen-
dency links among requirements statements .

• Formal presentations are detailed formal specifi-
cation texts, e .g ., those written in Reusable Gist .

• Natural language is used in initial acquisition to
capture informal statements that will later be for-
malized . Machine-generated natural language is
used for checking formal specifications against in -
formal requirements, in requirements documents,

and in explaining specifications to clients and oth-
ers who are not experts in requirements modeling .

The key technical challenge in supporting multipl e
presentations has been to develop a common inter-
nal representation, the ARIES Metamodel, that wil l
easily map to the notations of stereotypical views o f
systems (e .g ., data flow arcs, system functional de-
composition, state transitions, predicate calculus-lik e
formalisms) . Some metamodel concepts are relativel y
separable and easy to handle . For example, the type ,
relation, and event taxonomic diagrams are generate d
from the internal representation in an obvious way .
Other concepts are highly interrelated . States are re-
lations which are derived from a designated relatio n
which has a parameter varying over a finite set of val-
ues .

The ARIES Presentation System is an architectur e
for defining interactive presentations linked to th e
ARIES Metamodel . It is implemented in cLx an d
CLUE, on top of X windows, and is operational on bot h
the TI Explorer and the Sun . Each presentation defi-
nition includes a declarative description of the meta-
model relations which are used to establish and lin k
presentation pieces, and the editing and navigatio n
actions (associated either with a presentation piece o r
the entire presentation) . Editing actions match ef-
fect descriptions of transformations . Once the analys t
edits a presentation, ARIES searches for and applies
the evolution transformations which can make the re-
quired change .

4.4 Analysis and simulatio n

Analysis tools include a constraint propagation en-
gine and an incremental static analyzer . Analysis tool s
are important in order to check for completeness and
consistency. A constraint mechanism, derived fro m
Steele 's Constraint Language [23], has been incor-
porated into ARIES for general maintenance of con-
straints — bidirectional propagation, contradictio n
detection, retraction, and explanation . This mecha-
nism is essential where there are interacting desig n
properties (e .g ., interplay between performance char-
acteristics) and developers can use assistance in identi-
fying when an interaction of requirements may not b e
achievable . An incremental static analyzer, a versio n
of the static analyzer developed for the Specificatio n
Assistant [16], maintains calling and type informatio n
for the system description as it is being edited . It
also does such things as detect specification freedom s
which must be removed temporarily before simulatio n
can be performed .
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Simulation tools are useful in order to observe th e
behavior of a proposed system or its environment, i n
order to determine appropriate parameters for require-
ments or to discover unexpected or erroneous behav-
ior . Simulation of vehicle behavior demonstrates, fo r
example, how long it takes for traffic flow to return
to normal after a light has changed, this suggestin g
what the appropriate light duration should be base d
on the rate of traffic flow .

Simulations are constructed by means of a speciall y
modified compiler which translates a subset of the
ARIES Metamodel into Lisp and AP5, an in-core rela-
tional database [6] . Events described in the specifica-
tion can compile either into ordinary Lisp functions ,
or into task objects to be scheduled by the simulator' s
task scheduler . Functional requirements in the for m
of invariants are compiled into rules which notify the
analyst if and when they are violated [3] .

Successful simulation analysis depends cruciall y
upon the model of the system and environment chosen
for simulation . When attempting to answer a specifi c
validation question, it is useful to remove from con-
sideration those features of the system which are no t
relevant to the question. Otherwise the simulation wil l
generate volumes of useless information . Consider, fo r
example, the question of whether a specification o f
a traffic signal permits the traffic lights to be red i n
all four directions . To answer this question, it may
be convenient to ignore the distinction between green
and amber, and just treat traffic lights as two-state de-
vices, red and non-red . Furthermore, it may be usefu l
at first to restrict analysis to the intersection of tw o
one-way streets : if red lights are permitted in all di-
rections in this case, they will also be permitted in th e
two-way street case . If a suitable abstraction can b e
found, validation can also be performed by inspectio n
and constraint propagation .

Kevin Benner in our group is currently investigat-
ing which abstractions are most suitable for which
kinds of analysis tasks . He is developing evolution
transformations which construct the abstractions an d
designing the simulator to execute these abstractions .
Together these form a powerful set of capabilities for
specification validation .

4 .5 Evolution transformation s

As part of our earlier Specification Assistant work ,
we built a sizable library of evolution transforma-
tions, that is, transformations whose very purpose is t o
change the meaning of the specification to which the y
are applied . Like conventional correctness-preservin g
transformations, they blend computer power — the

ability to conduct repeated, mechanical operation s
rapidly and reliably — and human intuition — know-
ing which transformation to apply when . They allo w
us to :

• build specifications incrementally ,

• explain specifications incrementally, i .e ., by going
through the incremental record of their construc-
tion, and

• modify specifications by applying further evolu-
tions .

In the ARIES project we are now addressing several
deficiences in our earlier development . The focus of
the Specification Assistant project was to make an ini-
tial exploration of this approach to specification con-
struction and validation . Thus in populating our li-
brary of evolution transformations, we were motivate d
by the examples we studied (primarily those of a pa-
tient monitoring system, and a portion of an air-traffi c
control system) . We built somewhat generalized ver-
sions of the evolution transformations necessary fo r
these examples, but paid little attention to complete-
ness or uniformity of our emerging library. We sub-
divided the library into categories of transformation s
(e .g ., data-flow-modifying transformations, structure -
adding transformations), but otherwise did little to
support the user of the system in selecting the appro-
priate transformation . In ARIES we are addressing al l
of these deficiences .

4 .5 .1 Infrastructure to support evolution

A major goal of the ARIES project has been to support
the user in selecting evolution transformations from a
library, and in applying them . This library constitutes
reusable knowledge about the process of requirements
analysis, which complements the knowledge about the
inputs and outputs of this process, i .e ., knowledge o f
domains and systems. We now sketch the approac h
we are taking towards developing a usable evolutio n
transformation library.

The representation of specification concepts enable s
efficient and effective modification of the semanti c
content of complex specifications . Having identified
specification characteristics, we then chose a commo n
representation for them, semantic nets — nodes con-
nected by links, where the types of the nodes and link s
determine which characteristic they represent . For
example, in the entity-relationship model, procedure s
and types will be represented by nodes ; the type of a
procedure ' s formal parameter is represented by linkin g
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the node representing that procedure with the nod e
representing that type . Changes to the specification
induce the corresponding changes on these semanti c
net representations of the specification ' s characteris-
tics . Each change can be expressed as a combinatio n
of creating and destroying nodes, and inserting an d
removing links between nodes . We have identified
frequently recurring composites of these operations ,
for example, splice removes a direct link between two
nodes, A and B say, and replaces it with two links vi a
an intermediary, C say, so that A is linked to C an d
C is linked to B .

Finally, we characterized each evolution transfor-
mation in terms of the effects it induces on the se -
mantic net representation of each of the above cat-
egories . Splice-Data-Accesses, illustrated in Section
3, is an example of a transformation that performs a
splice along the information flow dimension . Likewise ,
an evolution transformation that introduces an inter -
mediate specialization of some concept (e .g ., given a
specification containing type person and type airline -
pilot, a specialization of person, we might introduce
an intermediate type employed-person) is character-
ized as inducing a splice upon the specialization lin k
structure . Similarly, an evolution transformation that
wraps a statement inside a conditional is also charac-
terized as inducing a splice, but upon the control-flow
structure (the control flow link that led into the orig-
inal statement now leads into the surrounding condi-
tional statement, and there is a link from the condi-
tional to the original statement) .

These steps considerably improved the use and or-
ganization of our library of transformations in the fol-
lowing ways :

• Selection from the library — to select an evolutio n
transformation, we give the characteristics of th e
changes we wish to induce on the specification ,
expressed as generic operations on the different
characteristics of specifications . We distinguis h
between changes that we want to have happen ,
changes that we don't want to have happen, an d
changes that we don't care about .

• Coverage of the library — we can (crudely) es-
timate where our library lacks coverage by look-
ing for useful combinations of generic changes o n
the different characteristics for which there ar e
no evolution transformations that induce those
changes .

• Uniformity of the library — seemingly unrelate d
evolution transformations that induce the sam e
generic changes upon different characteristics can

be seen to be similar, and are constructed to re-
flect this similarity .

In addition to augmenting the evolution transfor-
mations with generic descriptions of the effects they
induce, we also augment them with explicit represen-
tations of their inputs (what they must be given), out -
puts (what new specification structure(s) they pro -
duce), and preconditions (what conditions must b e
true to guarantee that they will run correctly) . Thes e
are represented in the same internal representation
that ARIES uses for describing inputs, outputs, an d
constraints on events. Each aspect of the transfor-
mation may also be given a hypertext documentatio n
string, as is customary for other concept definitions i n
the system . This makes it possible to employ the sam e
presentation and explanation tools to transformation s
as are applicable to components of application syste m
descriptions .

5 Related Work

The evolutionary approach to requirements spec-
ification has a number of precursors . Burstall an d
Goguen argued that complex specifications should b e
put together from simple ones, and developed thei r
language CLEAR to provide a mathematical founda-
tion for this construction process [5] . Goldman ob-
served that natural language descriptions of complex
tasks often incorporate an evolutionary vein – the fina l
description can be viewed as an elaboration of som e
simpler description, itself the elaboration of a yet sim-
pler description, etc ., back to some description deeme d
sufficiently simple to be comprehended from a non-
evolutionary description [9] .

Fickas suggested the application of an AI problem-
solving approach to specification construction [8] .
Fundamental to his approach is the notion that th e
steps of the construction process can be viewed as th e
primitive operations of a more general problem-solvin g
process, and are hence ultimately mechanizable . Con-
tinuing work in this direction is reported in [22] an d

[ 1 ] .
The Requirements Apprentice, [20], developed a s

part of the Programmer ' s Apprentice project [21], ad -
dresses the early stages of the software developmen t
process, and includes similar techniques to those of th e
Programmer 's Apprentice but operating on represen-
tations of requirements . Use of the Programmer 's Ap-
prentice is thus centered around selection of the appro-
priate fragment and its composition with the growin g
program, with application of minor transformation s
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to tailor these introduced fragments . In contrast, ou r
approach has been centered around selection of the
appropriate evolution transformations, and reformu-
lating abstract descriptions of system behavior usin g
such transformations. Yet in fact the two approache s
are closely related . Many evolution transformation s
instantiate cliches as part of their function, We ar e
currently exploring ways of making these cliches mor e
explicit in our transformation system .

Karen Huff has developed a software process mod-
eling and planning system that is in some ways similar
to ours [12] . Her GRAPPLE language for defining plan-
ning operators influenced our representation of evolu-
tion transformations . Conversely, her meta-operator s
applying to process plans were influenced by our wor k
on evolution transformations .

Kelly and Nonnenmann's WATSON system [17] con-
structs formal specifications of telephone system be-
havior from informal scenarios expressed in natura l
language . Their system formalizes the scenarios an d
then attempts to incrementally generalize the scenari o
in order to produce a finite-state machine . Their sys-
tem is able to assume significant initiative in the for-
malization process, because the domain of interest ,
telephony, is highly constrained, and because the pro -
grams being specified, call control features, are rela-
tively small . Our work is concerned with larger, les s
constrained design problems, where greater analyst in-
volvement is needed.

The PRISMA project [18] is also a system for assist-
ing in the construction of specifications from require-
ments . It supports multiple views of the emerging
specification, where the views that they have explore d
are data-flow diagrams, entity relationship models ,
and petri nets . Each view is represented in the same
underlying semantic-net formalism, yet represents a
different aspect of the specification . This representa-
tion is suited to graphical presentation and admits t o
certain consistency and completeness heuristics whose
semantics depend on the view being represented (e .g . ,
the lack of an `input' link in this representation in a
data-flow diagram indicates a process lacking inputs ;
in an entity-relationship diagram it indicates an en-
tity with no attributes ; in a petri net diagram it indi-
cates an event with no preconditions (prior events)) . A
paraphraser produces natural-language presentation s
of many of the kinds of information manipulated b y
the system (e .g ., of the requirements information rep -
resented in the different views, of the agenda of task s
and advice for performing those tasks, and of the re-
sults of the heuristics that detect uses of requirements
freedoms) .

6 Summary

ARIES provides a variety of capabilities to suppor t
the process of requirements acquisition and analysis .
These capabilities include acquisition, review, evolu-
tion support, analysis, and reuse support . These are
intended to help analysts satisfy the conflicting goal s
of software requirements specification in a gradual an d
systematic way. The system as a whole focuses on th e
problems of describing systems from different view-
points, and reconciling different viewpoints .

By building the ARIES prototype, we have bee n
able to identify and offer solutions for many of the
significant challenges which must be met in makin g
knowledge-based requirements and specification de-
velopment environments a reality. Specifically we
have concentrated on supporting reuse of large do-
main independent and dependent knowledge-bases ,
providing multi-presentation acquisition along wit h
significant automation support in the form of evo-
lution transformations, specification analysis, simula-
tions . We have developed mechanisms around man y
requirements support features including folders, reuse
techniques, acquisition and review, analysis and sim-
ulation, evolution transformations, and traceability .
Work on the project is ongoing ; most of the capa-
bilities envisioned for the system are already in place ,
but much work remains to be done .
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